AI Summer is a free educational blog with one single purpose. To help you learn everything you need to know about Deep Learning
If you want to become a Machine Learning Expert, a Data Scientist or simply stay updated on the latest trends in the field, this is the site for you.
Let’s build the most amazing AI solutions together.
Discover the fundamental principles behind Deep Neural Networks both from a programming and a mathematical point of view. Then you can proceed to more advance concepts and state of the art techniques
Develop and deploy real-life AI solutions on a variety of fields such as Computer Vision, Natural Language Processing, Robotics and Healthcare.
Utilize AI into your products and gain invaluable insights about your business performance. Or build entirely new Deep Learning startups that will provide value to our society.
Explore the most promising and recent Artificial Intelligence research as well as the best Machine Learning products and tools.
An Artificial Intelligenge hub where you can find and learn anything related to Deep Learning. From fundamental principles to state of art research and real-life applications
New to Natural Language Processing? This is the ultimate beginner’s guide to the attention mechanism and sequence learning to get you started
An intuitive understanding on Transformers and how they are used in Machine Translation. After analyzing all subcomponents one by one such as self-attention and positional encodings , we explain the principles behind the Encoder and Decoder and why Transformers work so well
In this article you will learn how the vision transformer works for image classification problems. We distill all the important details you need to grasp along with reasons it can work very well given enough data for pretraining.
The first article of the GANs in computer vision series - an introduction to generative learning, adversarial learning, gan training algorithm, conditional image generation, mode collapse, mutual information
The second article of the GANs in computer vision series - looking deeper in generative adversarial networks, mode collapse, conditional image synthesis, and 3D object generation, paired and unpaired image to image generation.
The sixth article-series of GAN in computer vision - we explore semantic image synthesis and learning a generative model from a single image
How can we efficiently train very deep neural network architectures? What are the best in-layer normalization options? We gathered all you need about normalization in transformers, recurrent neural nets, convolutional neural networks.
An overview of the most popular optimization algorithms for training deep neural networks. From stohastic gradient descent to Adam, AdaBelief and second-order optimization
What are skip connections, why we need them and how they are applied to architectures such as ResNet, DenseNet and UNet.
The central idea behind reinforcement learning and an overview of its algorithms
Fixed Q-targets, Double DQN, Dueling DQN, Prioritized Replay
Explore Policy-based methods and dive into policy gradients
How to develop high performance input pipelines in Tensorflow using the ETL pattern and functional programming
How to train your data in multiple GPUs or machines using distributed methods such as mirrored strategy, parameter-server and central storage.
Serving a Tensorflow model to users with Flask, uWSGI as a web server and Nginx as a reverse proxy. Why we need both uWSGI and Flask, why we need Nginx on top of uWSGI and how everything is connected together?
Start from the basics and learn about architectures such as Convolutional Networks and LSTMs.
Continue with more advance concepts like Reinfocement and Generative Learning by diving into state of the art research papers.
Finally it’s time to put your skills into practice by developing Computer Vision and Natural Language Processing applications using the most popular frameworks.
Autoencoders are an unsupervised type of network that can learn compact representation of the data features. They can be deterministic or probabilistic
Attention and Transformers have already been the standard in NLP applications and they are entering Computer Vision as well
Artificial Intelligence is transforming business processes and will be a major driving force for future companies. Why stay behind?
Become a Deep Learning Researcher or a Machine Learning Engineer. Everything you need to know to land your dream job.
A class of deep networks that use spatial structure and can be thought as regularized semi-connected feed forward networks. They have been extensively used in Computer vision applications.
Computer Vision is the field that is dominated by Deep Learning. Face recognition, image classification, video prediction are only a tiny portion of applications
Developing high-performant big data pipelines using Tensorflow or Pytorch
Deep Learning can be used to generate complete new real-like data such as images, text and more. But how is that possible?
GANs are constructed by two neural networks that compete against each other in an adversarial game, and are proven to be ideal for generating novel data.
GNNs are able to extract features from graphs and produce invaluable insights
Funtamental Machine Learning principles and concepts that are extended into Deep Neural Networks
Accelerate healthcare progress by applying AI into disease prediction, treatment, medical images and electronic health records.
Best practices on Machine Learning infrastructure. How to build, maintain and scale production-ready deep learning systems.
Text generation, language translation, spoken language understanding, sentiment analysis and dialogue systems
Implement basic Deep Learning models and advanced real-life applications with Pytorch
Recurrent Neural Networks are deep networks that contain loop connections between nodes. Because of that, they can use their internal memory to process sequences of inputs.
A subfield of Machine Leaning that focuses on how agents interacting with the environment and how to make the best decisions depending on the end goal.
Curated collections of internal and external resources. The ultimate AI hub.
Sharpen your software engineering skills and build robust models. MLOps, data processing and model deployment should definitely be in you arsenal
Learn Tensorflow and Keras for building Deep Learning applications
A category of ML algorithms that analyze and discover patterns from unlabeled data
Learn everything about one of the most famous convolutional neural network architectures that is widely used on image segmentation.
Start with Graph Neural Networks from zero and implement a graph convolutional layer in Pytorch
A curated list of the best courses and books to learn deep learning
A side-by-side comparison of JAX, Tensorflow and Pytorch while developing and training a Variational Autoencoder from scratch
Learn everything there is to know about the attention mechanisms of the infamous transformer, through 10+1 hidden insights and observations
How to develop and train a Transformer with JAX, Haiku and Optax. Learn by example how to code Deep Learning models in JAX
An introduction to JAX, its best features alongside with code snippets for you to get started
What is Explainable Artificial Intelligence (XAI), what are the most popular methods, where and how can it be applied
Understand how positional embeddings emerged and how we use the inside self-attention to model highly structured data such as images